Acta Cryst. (1995). C51, 787-790

# CeMo<sub>8</sub>O<sub>14</sub>, a Third Crystalline Form of the $RMo_8O_{14}$ Series (R = La, Ce, Pr, Nd, Sm)

G. KERIHUEL AND P. GOUGEON

Université de Rennes I, Laboratoire de Chimie du Solide et Inorganique Moléculaire, URA CNRS n° 1495, Avenue du Général Leclerc, 35042 Rennes CEDEX, France

(Received 1 March 1994; accepted 19 September 1994)

#### Abstract

The crystal structure of cerium octamolybdate, CeMo<sub>8</sub>O<sub>14</sub>, contains a mixture of *cis*-edge-sharing and trans bicapped octahedral Mo<sub>8</sub> clusters in equal proportions. The Mo<sub>8</sub> clusters and the O atoms form layers parallel to the bc plane of the orthorhombic unit cell. The arrangement of the O atoms derives from a close packing with the layer sequence ABAC... The Mo-Mo distances range from 2.5825 (9) to 2.778 (1) Å and from 2.5958 (8) to 2.886 (2) Å in the *trans* and *cis*edge-sharing isomeric clusters, respectively. The shortest Mo-Mo distance between Mo<sub>8</sub> clusters within the same layer is 3.0790 (9) Å, and that between clusters of adjacent layers is 3.635 (1) Å. The Mo-O distances are between 2.027 (6) and 2.110 (7) Å in the trans isomer and between 1.944 (5) and 2.169 (5) Å in the cis-edgesharing isomer. The environment of each of the two crystallographically independent Ce<sup>3+</sup> ions is constituted by 12 O atoms forming a distorted cuboctahedron. The Ce-O distances lie between 2.569(6) and 2.920(5) Å and between 2.442 (7) and 2.943 (6) Å for the Ce(1) and Ce(2) sites, respectively.

#### Comment

Compounds of the general formula  $RMo_8O_{14}$  (R = La, Ce, Pr, Nd, Sm) have been obtained recently by solid-state chemistry (Gougeon & McCarley, 1991) and by fused-salt electrolysis in the case of LaMo<sub>8-x</sub>O<sub>14</sub> (Leligny, Ledesert, Labbe, Raveau & McCarroll, 1990; Leligny, Labbe, Ledesert, Hervieu, Raveau & Mc-Carroll, 1993). Single-crystal structures of the La and Nd compounds revealed that their main metallic building block is the bi-face-capped octahedron, Mo<sub>8</sub>, which exhibits different configurations and arrangements. The simplest arrangement is observed in LaMo<sub>7.7</sub>O<sub>14</sub> (Leligny *et al.*, 1990) and NdMo<sub>8</sub>O<sub>14</sub> (Gougeon & McCarley, 1991) where only the *cis*-edge-sharing isomeric form of the Mo<sub>8</sub> cluster is found. They

both crystallize in the space group Aba2 with the following parameters:  $a_{La} = 9.196(1)$ ,  $b_{La} = 9.985(1)$ ,  $c_{La} = 11.171(1)$  Å;  $a_{Nd} = 9.209(3)$ ,  $b_{Nd} = 10.008(2)$ ,  $c_{Nd} = 11.143(4)$  Å. The structure of the stoichiometric compound LaMo<sub>8</sub>O<sub>14</sub> (Leligny *et al.*, 1993) is more complex due to a one-dimensional commensurate modulation of wave vector  $\mathbf{q}^* = \mathbf{b}^*/3$  [a = 11.129(1), b = 10.000(1), c = 9.218(1) Å]. The structure, which was solved in superspace group  $P \frac{C2ca}{111}$ , consists of *cis*-edgesharing and *trans* isomers, each form occurring in two distinct configurations. We present here the structure of CeMo<sub>8</sub>O<sub>14</sub>, which constitutes the third stoichiometric form of  $RMo_8O_{14}$ . A fourth form,  $PrMo_8O_{14}$ , will be reported in a forthcoming paper (Kerihuel & Gougeon, 1995).

The structure of CeMo<sub>8</sub>O<sub>14</sub> is characterized by the coexistence of cis-edge-sharing and trans bi-face-capped octahedral Mo<sub>8</sub> clusters in equal proportions. The ordering of the two isomeric clusters induces a doubling of the b parameter of the unit cell of  $NdMo_8O_{14}$  (c parameter in  $CeMo_8O_{14}$ ), while the other parameters are almost identical in the two polymorphic compounds. Both isomeric forms of the Mo<sub>8</sub> cluster are shown in Fig. 1 along with their O-atom environments. The cis-edgesharing isomer was first observed in LaMo<sub>7.7</sub>O<sub>14</sub> and  $NdMo_8O_{14}$ , and the *trans* isomer in La<sub>5</sub>Mo<sub>32</sub>O<sub>54</sub> (Gall, Toupet & Gougeon, 1993) where it coexists with the original Mo<sub>7</sub>-Mo<sub>10</sub>-Mo<sub>7</sub> tricluster chain fragment. The perspective view of the structure along the b axis (Fig. 2a) clearly shows that the Mo<sub>8</sub> clusters, as well as the O atoms, are arranged in layers parallel to the *bc* plane. The O-atom framework is similar to that in LaMo<sub>7.7</sub>O<sub>14</sub> and NdMo<sub>8</sub>O<sub>14</sub> and derives from a close packing of sequence ABAC, where, in the A layers, some of the O atoms are missing or substituted by Ce ions and the B and C layers are entirely occupied by O atoms. Fig. 2(b) depicts the arrangement of the Mo<sub>8</sub> clusters within the unit cell. The Mo-Mo distances within the trans bi-face-capped Mo<sub>8</sub> cluster show no large variations from those reported previously for La<sub>5</sub>Mo<sub>32</sub>O<sub>54</sub>. They range from 2.5825 (9) to 2.778 (1) Å [2.5728 (9)-2.7777 (8) Å in La<sub>5</sub>Mo<sub>32</sub>O<sub>54</sub> and the average value of 2.708 Å is also of the same order as that observed in  $La_5Mo_{32}O_{54}$  (2.705 Å). With the exception of the two capping Mo atoms, each of which is surrounded by six O atoms forming a distorted octahedron, the other Mo atoms are each bonded to five O atoms in an approximately square-pyramidal arrangement. The Mo-O distances are between 2.027(6) and 2.110(7) Å, with an average distance of 2.062 Å (2.069 Å for the trans isomer in La<sub>5</sub>Mo<sub>32</sub>O<sub>54</sub>). The Mo--Mo distances in the cis-edge-sharing isomer cover a range from 2.5958 (8) to 2.886(2)Å, slightly wider than in the trans isomer and its homologue found in NdMo<sub>8</sub>O<sub>14</sub> [2.590(1)-

> Acta Crystallographica Section C ISSN 0108-2701 ©1995

2.848 (1) Ål. The most important modifications concern the bonds between atoms Mo(7) and Mo(8), which have a 'butterfly' shape and vary by about 0.04 Å with respect to the analogous bonds in NdMo<sub>8</sub>O<sub>14</sub>. The other Mo-Mo distances within the cis-edge-sharing cluster are not significantly different from those observed in the Nd compound. The mean Mo-Mo distance is 2.738 Å, which is somewhat longer than the distance of 2.731 Å found in NdMo<sub>8</sub>O<sub>14</sub>. As in the trans isomer, each Mo atom is surrounded by five or six O atoms. However, the range of Mo-O distances is broader with distances varying between 1.944 (5) and 2.169 (5) Å. The average Mo-O distance of 2.042 Å is significantly shorter than that calculated for the trans isomer and suggests that the number of electrons per Mo<sub>8</sub> cluster is smaller in the *cis*-edge-sharing than in the *trans* isomer. The shortest Mo-Mo intercluster distance, which occurs between atoms Mo(3) and Mo(8) of two Mo<sub>8</sub> isomers within the same layer, is 3.0790(9) Å and corresponds to the analogous distance observed in both  $LaMo_{7.7}O_{14}$  [3.078 (1) Å] and NdMo<sub>8</sub>O<sub>14</sub> [3.068 (1) Å].



Fig. 1. (a) The trans and (b) the cis-edge-sharing bi-face-capped Mo<sub>8</sub> clusters with their O-atom environments.

On the other hand, the spacing between  $Mo_8$  clusters of adjacent layers can be as great as 3.635(1) Å. Both crystallographically independent Ce<sup>3+</sup> ions sit on inversion centers and are surrounded by 12 O atoms forming a distorted cuboctahedron. The Ce—O distances range from 2.569(6) to 2.920(5) Å and from 2.442(7) to 2.943(6) Å for the Ce(1) and Ce(2) sites, respectively.

Using the bond-length-bond-strength formula (Brown & Wu, 1976) for the Mo-O bond  $\{s = [d(Mo O)/1.882]^{-6.0}$ , an assignment of Mo oxidation states was made. In the formula, s is the bond strength of an Mo-O bond, d is the crystallographic Mo-O bond length and the values 1.882 (Mo-O bond of unit strength) and -6.0 are fitted parameters. The valence of each independent Mo atom was determined as follows: Mo(1) +3.43, Mo(2) +2.91, Mo(3) +2.87, Mo(4)+2.96, Mo(5) +3.38, Mo(6) +2.90, Mo(7) +2.91 and Mo(8) +3.83. These values lead to average Mo oxidation states of +3.04 and +3.25 for the trans and cisedge-sharing isomers, respectively. The average calculated valence of molybdenum in  $CeMo_8O_{14}$  is +3.14, which is close to the value based on the stoichiometry (+3.125) when considering all the Ce<sup>3+</sup> ions as trivalent. Similar calculations for the Ce<sup>3+</sup> ions {s =





Fig. 2. (a) Perspective view of the structure along the b axis with the  $Mo_8$  clusters emphasized by bold lines and (b) the arrangement of the  $Mo_8$  clusters within the unit cell.

 $[d(Ce-O)/2.160]^{-6.5}$  led to values of +2.86 and +3.37 for the Ce(1) and Ce(2) sites, respectively. These values are consistent with those observed in other molybdenum oxides containing  $Ce^{3+}$  ions such as  $CeMo_5O_8$ (+2.94) (Gall, 1993), Ce<sub>16</sub>Mo<sub>21</sub>O<sub>56</sub> (Gall & Gougeon, 1993), where the eight crystallographically independent Ce atoms have calculated valences ranging between +2.93 and +3.38, and Ce<sub>6</sub>Mo<sub>10</sub>O<sub>39</sub> (+3.01 to +3.38) (Gatehouse & Same, 1978).

## **Experimental**

Single crystals were obtained by heating a stoichiometric mixture of CeO<sub>2</sub>, MoO<sub>3</sub> and Mo in a sealed molybdenum crucible at about 2220 K for 15 min. The crucible was then cooled at a rate of  $100 \text{ K} \text{ h}^{-1}$  to 1300 K and finally furnace cooled to room temperature.

#### Crystal data

| CeMo <sub>8</sub> O <sub>14</sub>        | Mo $K\alpha$ radiation                                   | Table 2. S                             | Selected geo | metric paramete                    | rs (Å)    |
|------------------------------------------|----------------------------------------------------------|----------------------------------------|--------------|------------------------------------|-----------|
| $M_r = 1131.63$                          | $\lambda = 0.71073 \text{ Å}$                            | trans. Mos cluster                     |              |                                    |           |
| Orthorhombic                             | Cell parameters from 25                                  | $M_{-}(1) = M_{-}(2)$                  | 2 5925 (0)   | M. (2) 0(5)                        | 2042 (5)  |
| Phon                                     | reflections                                              | Mo(1) - Mo(3)<br>Mo(1) - Mo(3)         | 2.5825 (9)   | Mo(2) = O(3)<br>Mo(2) = O(4)       | 2.043 (5) |
| -0.1027(7)                               |                                                          | Mo(1) = Mo(2)<br>Mo(1) = Mo(4)         | 2.004 (1)    | $M_0(2) = O(4)$<br>$M_0(2) = O(6)$ | 2.052 (6) |
| a = 9.1937(7) A                          | $\theta = 11 - 32^{-1}$                                  | $M_0(1) = M_0(4)$<br>$M_0(2) = M_0(4)$ | 2.0439(8)    | $M_0(2) = O(0)$<br>$M_0(2) = O(0)$ | 2.001 (0) |
| b = 11.121(1) Å                          | $\mu = 13.77 \text{ mm}^{-1}$                            | $M_0(2) = M_0(3)$                      | 2.753(1)     | $M_0(2) = O(3)$                    | 2.005 (7) |
| c = 20.014(1) Å                          | T = 295  K                                               | $M_0(2) - M_0(3)$                      | 2.7642 (8)   | $M_0(3) = O(7)$                    | 2.038 (6) |
| $V = 2046.3 (4) \text{ Å}^3$             | Irregular                                                | Mo(2) - Mo(4)                          | 2.778 (1)    | Mo(3)                              | 2.062 (7) |
| Z = 8                                    | $0.14 \times 0.12 \times 0.10 \text{ mm}$                | $M_0(3) - M_0(4)$                      | 2.708 (1)    | Mo(3)—O(5)                         | 2.067 (6) |
| $D = 7.346 \text{ Mg m}^{-3}$            | Plack                                                    | Mo(3)-Mo(4)                            | 2.7742 (9)   | Mo(3)                              | 2.076 (5) |
| $D_x = 7.540$ Wig iii                    | DIACK                                                    | Mo(3)Mo(8)†                            | 3.0790 (9)   | Mo(3)                              | 2.080 (6) |
|                                          |                                                          | Mo(1)—O(5)                             | 2.047 (6)    | Mo(4)—O(8)                         | 2.027 (6) |
| Data collection                          |                                                          | Mo(1)—O(7)                             | 2.050 (6)    | Mo(4)—O(3)                         | 2.038 (6) |
| Enraf_Nonius CAD-4                       | 3568 observed reflections                                | Mo(1)—O(1)                             | 2.052 (6)    | Mo(4)—O(7)                         | 2.044 (6) |
| diffusitometer                           | [I > 2-(D)]                                              | Mo(1)—O(6)                             | 2.078 (6)    | Mo(4)—O(6)                         | 2.054 (6) |
|                                          | [1 > 20(1)]                                              | Mo(1)—O(2)                             | 2.083 (6)    | Mo(4)—O(10)                        | 2.110 (7) |
| $\omega$ -2 $\theta$ scans               | $\theta_{\rm max} = 40^{\circ}$                          | Mo(1)—O(3)                             | 2.087 (6)    |                                    |           |
| Absorption correction:                   | $h = 0 \rightarrow 16$                                   | ais Mo- aluster                        |              |                                    |           |
| refined from $\Delta F$                  | $k = 0 \rightarrow 20$                                   | cis-iviog cluster                      |              |                                    |           |
| (DIFABS: Walker &                        | $l = 0 \rightarrow 36$                                   | Mo(5) - Mo(5)                          | 2.001 (2)    | $M_0(6) = O(13)$                   | 2.046 (6) |
| Stuart 1083)                             | 3 standard reflections                                   | MO(5) - MO(7)                          | 2.7292 (8)   | MO(6) = O(12)                      | 2.051 (0) |
| T = 0.10 $T = 0.02$                      | frequencie 00 min                                        | MO(3) - MO(0)<br>MO(5) - MO(6)         | 2.7504 (9)   | $M_0(0) = O(2)$<br>$M_0(6) = O(9)$ | 2.085 (0) |
| $T_{\rm min} = 0.19, T_{\rm max} = 0.23$ | frequency: 90 mm                                         | $M_0(5) = M_0(8)$                      | 2.755(1)     | $M_0(0) = O(3)$<br>$M_0(7) = O(1)$ | 2.087 (7) |
| 6930 measured reflections                | intensity decay: 0.1%                                    | $M_0(6) = M_0(7)$                      | 2.3330 (0)   | $M_0(7) = O(10)$                   | 2.000 (0) |
| 6930 independent reflections             |                                                          | $M_0(6) - M_0(7)$                      | 2.8180 (9)   | $M_0(7) - O(13)$                   | 2.041 (6) |
|                                          |                                                          | Mo(7)—Mo(8)                            | 2.692 (1)    | Mo(7)—O(14)                        | 2.076 (6) |
| Refinement                               |                                                          | Mo(7)-Mo(8)                            | 2.8239 (9)   | Mo(7)-O(15)                        | 2.169 (5) |
|                                          | <b>A A A A A A A A A A</b>                               | Mo(7)-Mo(7)                            | 2.886 (2)    | Mo(8)O(4)                          | 1.950 (6) |
| Refinement on F                          | $\Delta \rho_{\rm max} = 2.90 \ {\rm e \ A}^{\circ}$     | Mo(5)-O(11)                            | 1.944 (5)    | Mo(8)—O(8)                         | 2.015 (6) |
| R = 0.040                                | $\Delta \rho_{\rm min} = -1.05 \ {\rm e} \ {\rm A}^{-3}$ | Mo(5)O(12)                             | 1.988 (6)    | Mo(8)-O(15)                        | 2.017 (1) |
| wR = 0.042                               | Extinction correction: Stout                             | Mo(5)—O(2)                             | 2.002 (6)    | Mo(8)O(14)                         | 2.046 (6) |
| S = 1.582                                | & Jensen (1968)                                          | Mo(5)—O(10)                            | 2.045 (7)    | Mo(8)—O(13)                        | 2.067 (6) |
| 3568 reflections                         | Extinction coefficient:                                  | Mo(5)—O(1)                             | 2.085 (6)    | Mo(8)—O(12)                        | 2.097 (6) |
|                                          | $0.(12.(4)) \times 10^{-8}$                              | Mo(6)—O(14)                            | 2.039 (6)    |                                    |           |
| 141 parameters                           | 9.012 (4) × 10                                           | Co onvironment                         |              |                                    |           |
| $w = 4F_o^2 / [\sigma^2 (F_o^2)]$        | Atomic scattering factors                                | $C_{e}(1) = O(7)$                      | 2 560 (6)    | $C_{\alpha}(2) = O(11)$            | 2 442 (7) |
| $+ (0.02F_o^2)^2$ ]                      | from International Tables                                | Ce(1) = O(7)                           | 2.309 (0)    | $C_{e(2)} = O(11)$                 | 2.442(7)  |
| $(\Delta/\sigma)_{\rm max} < 0.01$       | for X-ray Crystallography                                | $C_{e}(1) = O(5)$                      | 2.666 (5)    | $C_{e}(2) = O(6)$                  | 2,529 (6) |
|                                          | (1974, Vol. IV)                                          | Ce(1) = O(9)                           | 2.684 (8)    | Ce(2) = O(10)                      | 2.725 (7) |
|                                          | <pre></pre>                                              | Ce(1) - O(3)                           | 2.745 (6)    | Ce(2)-O(15)                        | 2.918 (7) |
| Table 1 Fractional atomic                | coordinates and equivalent                               | Ce(1) - O(2)                           | 2.920 (5)    | Ce(2) = O(12)                      | 2.943 (6) |

# isotropic displacement parameters (Å<sup>2</sup>)

# $B_{\rm eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$

|       | x           | у           | Ζ           | Beg       |
|-------|-------------|-------------|-------------|-----------|
| Ce(1) | 0           | 1/2         | 0           | 0.553 (8) |
| Ce(2) | 1/2         | 0.52433 (5) | 1/4         | 0.474 (8) |
| Mo(1) | 0.62127 (8) | 0.72582 (5) | 0.07950 (3) | 0.234 (8) |

| Mo(2) | 0.62114 (8) | 0.62338 (5) | 0.45640 (3) | 0.169 (7) |
|-------|-------------|-------------|-------------|-----------|
| Mo(3) | 0.12332 (8) | 0.12486 (5) | 0.53670 (3) | 0.183 (7) |
| Mo(4) | 0.62070 (8) | 0.48808 (5) | 0.07921 (3) | 0.225 (8) |
| Mo(5) | 0.61987 (8) | 0.87129 (5) | 0.21275 (3) | 0.171 (7) |
| Mo(6) | 0.87862 (7) | 0.49638 (5) | 0.33014 (3) | 0.116 (8) |
| Mo(7) | 0.12454 (8) | 0.61638 (5) | 0.29386 (3) | 0.177 (8) |
| Mo(8) | 1.12024 (7) | 0.72976 (5) | 0.16762 (3) | 0.188 (8) |
| O(1)  | 0.2581 (6)  | 0.2619 (4)  | 0.8345 (3)  | 0.45 (7)  |
| O(2)  | 0.5124 (7)  | 0.8674 (4)  | 0.1258 (3)  | 0.33 (6)  |
| O(3)  | 0.7616 (7)  | 0.3679 (4)  | 0.0377 (3)  | 0.41 (7)  |
| O(4)  | 0.2599 (6)  | 0.7557 (4)  | 0.5876 (3)  | 0.26 (6)  |
| O(5)  | 0.9905 (7)  | 0.7396 (4)  | 0.0010 (3)  | 0.44 (6)  |
| O(6)  | 0.9918 (7)  | 0.1053 (4)  | 0.3680(3)   | 0.55 (7)  |
| O(7)  | 0.2324 (6)  | 0.6064 (5)  | 0.4601 (3)  | 0.38 (7)  |
| O(8)  | 0.5076 (8)  | 0.3658 (4)  | 0.3742 (3)  | 0.56 (7)  |
| O(9)  | 0.2350 (7)  | 0.4963 (5)  | 0.0796 (3)  | 0.52 (7)  |
| O(10) | 0.2364 (7)  | 0.0110 (4)  | 0.8298 (3)  | 0.34 (7)  |
| O(11) | 1/2         | 0.2561 (6)  | 3/4         | 0.44 (9)  |
| O(12) | 0.7562 (7)  | 0.1314 (4)  | 0.7898 (3)  | 0.41 (7)  |
| O(13) | 0.9870 (6)  | 0.6095 (4)  | 0.1180 (3)  | 0.30 (6)  |
| O(14) | 0.7362 (7)  | 0.6144 (4)  | 0.2878 (3)  | 0.40 (7)  |
| O(15) | 1/2         | 0.2620      | 1/4         | 0.37 (9)  |

| lo(1)Mo(3)                 | 2.5825 (9)    | Mo(2)O(5)            | 2.043 (5) |
|----------------------------|---------------|----------------------|-----------|
| lo(1)Mo(2)                 | 2.604 (1)     | Mo(2)—O(4)           | 2.052 (6) |
| lo(1)Mo(4)                 | 2.6439 (8)    | Mo(2)—O(6)           | 2.061 (6) |
| lo(2)—Mo(4)                | 2.753 (1)     | Mo(2)—O(9)           | 2.065 (7) |
| lo(2)Mo(3)                 | 2.763 (1)     | Mo(2)O(3)            | 2.079 (6) |
| lo(2)Mo(3)                 | 2.7642 (8)    | Mo(3)—O(7)           | 2.038 (6) |
| lo(2)Mo(4)                 | 2.778 (1)     | Mo(3)O(9)            | 2.062 (7) |
| lo(3)—Mo(4)                | 2.708 (1)     | Mo(3)O(5)            | 2.067 (6) |
| lo(3)Mo(4)                 | 2.7742 (9)    | Mo(3)O(4)            | 2.076 (5) |
| lo(3)—Mo(8)†               | 3.0790 (9)    | Mo(3)                | 2.080 (6) |
| lo(1)—O(5)                 | 2.047 (6)     | Mo(4)—O(8)           | 2.027 (6) |
| lo(1)—O(7)                 | 2.050 (6)     | Mo(4)—O(3)           | 2.038 (6) |
| lo(1)—O(1)                 | 2.052 (6)     | Mo(4)—O(7)           | 2.044 (6) |
| lo(1)—O(6)                 | 2.078 (6)     | Mo(4)O(6)            | 2.054 (6) |
| lo(1)—O(2)                 | 2.083 (6)     | Mo(4)-O(10)          | 2.110 (7) |
| lo(1)—O(3)                 | 2.087 (6)     |                      |           |
|                            |               |                      |           |
| is-Mo <sub>8</sub> cluster |               |                      |           |
| lo(5)—Mo(5)                | 2.661 (2)     | Mo(6)-O(13)          | 2.046 (6) |
| lo(5)-Mo(7)                | 2.7292 (8)    | Mo(6)-O(12)          | 2.051 (6) |
| lo(5)-Mo(6)                | 2.7304 (9)    | Mo(6)                | 2.085 (6) |
| lo(5)-Mo(6)                | 2.755 (1)     | Mo(6)                | 2.087 (7) |
| lo(6)Mo(8)                 | 2.5958 (8)    | Mo(7)—O(1)           | 2.000 (6) |
| lo(6)-Mo(7)                | 2.724 (1)     | Mo(7)—O(10)          | 2.039 (7) |
| lo(6)-Mo(7)                | 2.8180 (9)    | Mo(7)-O(13)          | 2.041 (6) |
| Io(7)—Mo(8)                | 2.692 (1)     | Mo(7)-O(14)          | 2.076 (6) |
| lo(7)-Mo(8)                | 2.8239 (9)    | Mo(7)-O(15)          | 2.169 (5) |
| lo(7)Mo(7)                 | 2.886 (2)     | Mo(8)O(4)            | 1.950 (6) |
| lo(5)—O(11)                | 1.944 (5)     | Mo(8)                | 2.015 (6) |
| lo(5)—O(12)                | 1.988 (6)     | Mo(8)-O(15)          | 2.017 (1) |
| lo(5)—O(2)                 | 2.002 (6)     | Mo(8)-O(14)          | 2.046 (6) |
| lo(5)—O(10)                | 2.045 (7)     | Mo(8)-O(13)          | 2.067 (6) |
| lo(5)—O(1)                 | 2.085 (6)     | Mo(8)-O(12)          | 2.097 (6) |
| lo(6)—O(14)                | 2.039 (6)     |                      |           |
| ., .,                      | .,            |                      |           |
| e environment              |               |                      |           |
| e(1)—O(7)                  | 2.569 (6)     | Ce(2)-O(11)          | 2.442 (7) |
| e(1)—O(13)                 | 2.660 (5)     | Ce(2)-O(14)          | 2.508 (7) |
| e(1)—O(5)                  | 2.666 (5)     | Ce(2)—O(6)           | 2.529 (6) |
| e(1)—O(9)                  | 2.684 (8)     | Ce(2)-O(10)          | 2.725 (7) |
| e(1)—O(3)                  | 2.745 (6)     | Ce(2)-O(15)          | 2.918 (7) |
| e(1)—O(2)                  | 2.920 (5)     | Ce(2)-O(12)          | 2.943 (6) |
| 1. D.                      |               |                      | •         |
| t Distanc                  | e netween Mos | clusters of the same | laver     |

Data were corrected for Lorentz and polarization effects. The structure was solved with the aid of MULTAN11/82 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982)

and subsequent difference Fourier syntheses. Refinement of the

occupancy factors for the Ce and Mo sites confirmed that they are fully occupied. All calculations were performed with the *MolEN* (Fair, 1990) programs on a Digital MicroVAX 3100.

Lists of structure factors and anisotropic displacement parameters have been deposited with the IUCr (Reference: DU1086). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

#### References

- Brown, I. D. & Wu, K. K. (1976). Acta Cryst. B32, 1957-1959.
- Fair, K. (1990). MolEN. An Interactive Intelligent System for Crystal
- Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Gall, P. (1993). Thesis, Univ. of Rennes, France. Gall, P. & Gougeon, P. (1993). Acta Cryst. C49, 659-663.
- Gall, P., Toupet, L. & Gougeon, P. (1993). Acta Cryst. C49, 1580– 1584.
- Gatehouse, B. M. & Same, R. (1978). J. Solid State Chem. 25, 115–120.
- Gougeon, P. & McCarley, R. E. (1991). Acta Cryst. C47, 241-244.
- Kerihuel, G. & Gougeon, P. (1995). Acta Cryst. In the press.
- Leligny, H., Labbe, P., Ledesert, M., Hervieu, M., Raveau, B. & McCarroll, W. H. (1993). Acta Cryst. B49, 444-454.
- Leligny, H., Ledesert, M., Labbe, P., Raveau, B. & McCarroll, W. H. (1990). J. Solid State Chem. 87, 35-43.
- Main, P., Fiske, S., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Stout, G. & Jensen, L. H. (1968). In X-ray Structure Determination. London: MacMillan.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1995). C51, 790-792

# Structure Refinement of Y<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> by Neutron Powder Diffraction

BRENDAN J. KENNEDY

Department of Inorganic Chemistry, The University of Sydney, New South Wales 2006, Australia

(Received 2 March 1994; accepted 14 November 1994)

### Abstract

The structure of the pyrochlore yttrium ruthenium oxide,  $Y_2Ru_2O_7$ , was determined by Rietveld analysis of time-of-flight neutron powder diffraction data. Each Ru atom has a nearly regular octahedral coordination environment whereas each Y atom has a distorted eightfoldcoordination geometry. The JCPDS file number for yttrium ruthenium oxide is 28-1456.

# Comment

A number of oxide pyrochlores, especially those incorporating Ru or Ir, exhibit high electrocatalytic activity for several oxygen-transfer reactions, including O<sub>2</sub> reduction or evolution (Egdell, Goodenough, Hamnett & Naish, 1983) and the oxidation of organic molecules (Felthouse, Fraundorf, Friedman & Schosser, 1991). Their activity is believed to be related to their oxygen non-stoichiometry, their general formula being given by  $A_2B_2O_{7-y}$ . These materials are also of interest because of the sensitivity of their electronic structure to the A-type cation. This sensitivity is believed to be a consequence of changes in both the RuO<sub>6</sub> geometry and the Ru  $t_{2g}$  band width.

As part of a detailed study of structural (Facer, Howard & Kennedy, 1993; Facer, Elcombe & Kennedy, 1993) and electrocatalytic (Gokagac & Kennedy, 1993, 1994) properties of metal pyrochlores, it was decided to investigate the structure of  $Y_2Ru_2O_7$  in order to obtain an accurate description of the  $YO_8$  and  $RuO_6$  polyhedra, and to determine the anisotropy of the displacement parameters. The previously reported powder X-ray measurements were expected to be relatively insensitive to O-atom displacements and thermal vibrations (Kanno, Takeda, Yamamoto, Kawamoto & Yamamoto, 1993). The results of the structure determination of  $Y_2Ru_2O_7$ using powder neutron diffraction data are reported here.

The neutron diffraction refinement of the structure of  $Y_2Ru_2O_7$  confirms that the material adopts a regular pyrochlore structure (Subramanian, Aravamudan & Subba Rao, 1983). No 420 reflection was observed in the neutron and X-ray diffraction data, indicating that there was no vacancy ordering on the O2 site (Beyerlein *et al.*, 1984). Refinement proceeded in space group  $Fd\bar{3}m$ . Refinement of the occupancies of the Y, Ru and O sites indicated no significant deviation from the expected sto-ichiometry.

The refined positional parameter for the O1 atom, 0.33536(3), is in excellent agreement with that determined by X-ray powder methods (Kanno, Takeda, Yamamoto, Kawamoto & Yamamoto, 1993). The YO<sub>8</sub> scalenohedron is axially compressed with six O atoms at 2.4503 (2) Å from Y and two at 2.19601 (3) Å. These Y-O bond lengths are similar to those found in Y<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub> (Facer, Howard & Kennedy, 1993). The Ru—O distance, 1.9911 (1) Å, is slightly longer than that found in Bi<sub>2</sub>Ru<sub>2</sub>O<sub>6.9</sub> (1.974 Å; Facer, Elcombe & Kennedy, 1993), while the O-Ru-O angle has decreased to  $128.45(2)^{\circ}$  in  $Y_2Ru_2O_7$  relative to that of 133° in Bi<sub>2</sub>Ru<sub>2</sub>O<sub>6.9</sub>, indicating weaker Ru-O-Ru interactions in  $Y_2Ru_2O_7$ . This is consistent with the semiconducting properties of  $Y_2Ru_2O_7$  and metallic properties of Bi<sub>2</sub>Ru<sub>2</sub>O<sub>6.9</sub>. The displacement parameters for both the Y and O1 atoms are large and highly anisotropic. For the Y atom, movement along the threefold axis, that is towards the two closest O atoms, is